Chorded Pancyclicity in k-Partite Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forbidden subgraphs for chorded pancyclicity

We call a graph G pancyclic if it contains at least one cycle of every possible length m, for 3 ≤ m ≤ |V (G)|. In this paper, we define a new property called chorded pancyclicity. We explore forbidden subgraphs in claw-free graphs sufficient to imply that the graph contains at least one chorded cycle of every possible length 4, 5, . . . , |V (G)|. In particular, certain paths and triangles with...

متن کامل

Score Sets in Oriented k - partite Graphs

Let D(U1, U2, ..., Uk) be an oriented k -partite graph with |Ui| = ni, 1 ≤ i ≤ k. Then, the score of a vertex ui in Ui is defined by aui (or simply ai ) = ∑k t=1, t 6=i nt+d + ui −d − ui , where d+ui and d − ui are respectively the outdegree and indegree of ui. The set A of distinct scores of the vertices of D(U1, U2, ..., Uk) is called its score set. In this paper, we prove that if a1 is a non...

متن کامل

Minus domination number in k-partite graphs

A function f de1ned on the vertices of a graph G = (V; E); f :V → {−1; 0; 1} is a minus dominating function if the sum of its values over any closed neighborhood is at least one. The weight of a minus dominating function is f(V ) = ∑ v∈V f(v). The minus domination number of a graph G, denoted by −(G), equals the minimum weight of a minus dominating function of G. In this paper, a sharp lower bo...

متن کامل

Total minus domination in k-partite graphs

A function f defined on the vertices of a graph G = (V ,E), f : V → {−1, 0, 1} is a total minus dominating function (TMDF) if the sum of its values over any open neighborhood is at least one. The weight of a TMDF is the sum of its function values over all vertices. The total minus domination number, denoted by −t (G), of G is the minimum weight of a TMDF on G. In this paper, a sharp lower bound...

متن کامل

Spanners of Complete k -Partite Geometric Graphs

We address the following problem: Given a complete k-partite geometric graph K whose vertex set is a set of n points in R, compute a spanner of K that has a “small” stretch factor and “few” edges. We present two algorithms for this problem. The first algorithm computes a (5 + )-spanner of K with O(n) edges in O(n log n) time. The second algorithm computes a (3 + )-spanner of K with O(n log n) e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2018

ISSN: 0911-0119,1435-5914

DOI: 10.1007/s00373-018-1942-4